/fmdas
W @n

dl

' The Mthematicz
Infution Be'nnc

Deep Lea nmg

\

m Ac

. %‘ Y,

*«M

“ ‘ ," £ ._“ ; A l |

~ '\'/ 0 W
¥ '

X/ oyl (i 0

:

The Maths of Deep Learning

Alex Punnen

Table of contents

1 The Maths behind Neural Networks
1.1 Contents
2 The simplest Neural Network - Perceptron using Vectors and Dot
Products
2.1 The Magic of Representation - Vector Space and Hyperplane
2.1.1 Vectors
2.1.3 Two dimensional matrices can be thought of as one
dimensional vectors stacked on top of each other.
2.1.4 Dot Product
2.2 References
3 Perceptron Training via Feature Vectors & HyperPlane split
3.1 How are the weights learned?
3.1.1 The Intuition: Nudging the Vector
3.1.2 The Update Rules
3.1.3 The Formal Algorithm
3.2 References
4 Gradient Descent
4.1 Neural Network as a Chain of Functions
4.1.1 The Forward Pass
4.1.2 The Cost Function (Loss Function)
4.1.3 The Goal of Training
4.2 Optimization: Gradient Descent — Take 1
4.3 Gradient Descent for Scalar Functions
4.3.1 Running the Numbers: A Real Example
4.3.2 The Adjustment Problem: Which Direction? How Much?
4.3.3 The Chain of Effects

4.3.4 The Solution: Applying the Chain Rule
4.3.5 Making the Update: Gradient Descent
4.3.6 Verification: Did It Work?
4.4 Gradient Descent for a Two-Layer Neural Network (Scalar Form)
4.5 Some other notes related to Gradient Descent
4.6 References
5 Backpropagation with Scalar Calculus
5.1 How Backpropagation Works
5.2 Writing This Out as Chain Rule
5.3 Neural Net as a Composition of Vector Functions
5.3.1 The Backpropagation Algorithm Step-by-Step
5.3.2 Summary,
5.4 References
6 Backpropagation with Matrix Calculus
6.1 Some Math Intuition
6.1.1 Gradient Vector
6.2 Jacobian Matrix
6.2.1 The Chain Rule with Matrices
6.2.2 Backpropagation Trick - VJP (Vector Jacobian Product)_and
JVP (Jacobian Vector Product)
6.2.3 Hadamard Product
6.3 Backpropagation Derivation
6.3.1 The 2-Layer Neural Network Model
6.3.2 Gradient Vector/2D-Tensor of [.oss Function in [ast L.ayer
6.4 Jacobian of .oss Function in Inner Layer

6.5 Using Gradient Descent to Find the Optimal Weights to Reduce the
Loss Function
6.6 References
7 Backpropagation with Softmax and Cross Entropy,
7.1 The Neural Network Model
7.2 Gradient Descent
7.3 Derivative of I.oss with Respect to Weights in Inner Layers
7.4 Some Implementation Details

7.4.1 Implementation in Python
7.5 Gradient Descent
7.6 References
8 Neural Network Implementation
8.1 A Two layered Neural Network in Python
8.2 References

1 The Maths behind Neural

Networks

Alex Punnen
© All Rights Reserved

1.1 Contents

e Chapter 1: The simplest Neural Network - Perceptron using Vectors and
Dot Products

e Chapter 2: Perceptron Training via Feature Vectors & HyperPlane split

e Chapter 3: Gradient Descent and Optimization

e Chapter 4: Backpropagation with Scalar Calculus

e Chapter 5: Backpropagation with Matrix Calculus

e Chapter 6: Backpropagation with Softmax and Cross Entropy,

e Chapter 7: Neural Network Implementation

clbr://internal.invalid/book/EPUB/text/1_vectors_dot_product_and_perceptron.md
clbr://internal.invalid/book/EPUB/text/1_vectors_dot_product_and_perceptron.md
clbr://internal.invalid/book/EPUB/text/2_perceptron_training.md
clbr://internal.invalid/book/EPUB/text/3_gradient_descent.md
clbr://internal.invalid/book/EPUB/text/4_backpropogation_chainrule.md
clbr://internal.invalid/book/EPUB/text/5_backpropogation_matrix_calculus.md
clbr://internal.invalid/book/EPUB/text/6_backpropogation_softmax.md
clbr://internal.invalid/book/EPUB/text/7_neuralnetworkimpementation.md

2 The simplest Neural Network -
Perceptron using Vectors and Dot

Products

Even the most complex Neural network is based on vectors and matrices,
and it uses the concept of a cost function and algorithms like gradient
descent to find a reduced cost. Then, it propagates the cost back to all
constituents of the network proportionally via a method called back-
propagation.

Have you ever held an integrated circuit or chip in your hand or seen one? It
looks overwhelmingly complex. But its base is the humble transistor and
Boolean logic. To understand something complex, we need to understand
the simpler constituents.

2.1 The Magic of Representation - Vector Space
and Hyperplane

Most people are familiar with neural networks, cost functions, gradient
descent, and backpropagation. However, beyond these building blocks is
the magic of representations.

Features live in a multidimensional universe where the concept of a
hyperplane classifies or clusters similar features together.

This idea applies equally to the simplest neural networks and to modern
architectures such as Transformers.

One of the earliest neural networks, Rosenblatt’s Perceptron, introduced
the idea of representing inputs as vectors and using the dot product to
define a decision boundary — a hyperplane that separates input feature
vectors.

First a short refresher.

2.1.1 Vectors

A vector is an object that has both a magnitude and a direction. Example
Force and Velocity. Both have magnitude as well as direction.

However we need to specify also a context where this vector lives -Vector
Space. For example when we are thinking about something like Force
vector, the context is usually 2D or 3D Euclidean world.

2Dvector

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
http://www.mathcentre.ac.uk/resources/uploaded/mc-web-mech1-5-2009.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-web-mech1-5-2009.pdf

3Dvector
(Source: 3Blue1Brown)

The easiest way to understand the Vector is in such a geometric context, say
2D or 3D cartesian coordinates, and then extrapolate it for other Vector
spaces which we encounter but cannot really imagine.

2.1.2 Matrices - A way to represent Vectors (and
Tensors)

Vectors are represented as matrices. A Vector is a one dimensional matrix.A
matrix is defined to be a rectangular array of numbers. Example here is a
Euclidean Vector in three-dimensional Euclidean space (or R?) with some
magnitude and direction (from (0,0,0) origin in this case).

A vector is represented either as column matrix (m1)or as a row matrix
(1m).
ai
a= ay =[a; ay as]

as

a1, a2, as are the component scalars of the vector. A vector is represented as

—. . . .
a in the Vector notation and as a; in the Index Notation.

https://en.wikipedia.org/wiki/Euclidean_vector

2.1.3 Two dimensional matrices can be thought of
as one dimensional vectors stacked on top of each
other.

This intuition is especially helpful when we use dot products on neural
network weight matrices.

2.1.4 Dot Product

This is a very important concept in linear algebra and is used in many
places in machine learning.

Algebraically, the dot product is the sum of the products of the
corresponding entries of the two sequences of numbers.

o 7

if @ = (a1, as, a3) and b = (b1, by, b3), then
— . :
a-b=aib; + asbs + asbs = a;b; in index notation

In Matrix notation,

_>
j-b:[al as a3] b2 :aibi

Geometrically, it is the product of the Euclidean magnitudes of the two
vectors and the cosine of the angle between them

_>—> - —
a-b= a b cos@

A o8t

dotproduct

Note- These definitions are equivalent when using Cartesian coordinates
(Ref 8, 9)

If two vectors point in roughly the same direction, their dot product is
positive. If they point in opposite directions, the dot product is negative.

This simple geometric fact becomes a powerful computational tool.

Imagine a problem where we want to classify whether a leaf is healthy or
diseased based on certain features. Each leaf is represented as a feature
vector in a two-dimensional space (for simplicity).

If we can find a weight vector such that:
Its dot product with healthy leaf vectors is positive
Its dot product with diseased leaf vectors is negative

then that weight vector defines a hyperplane that splits the feature space
into two regions.

This is exactly how first artificial neuron-the Perceptron performs
classification.

http://tutorial.math.lamar.edu/Classes/CalcII/DotProduct.aspx
https://sergedesmedt.github.io/MathOfNeuralNetworks/VectorMath.html#learn_vector_math_diff

/

Healthy Leaves ¢ ® ,’/

_ /
+w'x>0 @ @ ’ o
® ,° Decision

@ ¢ @ .,
e @ //Boundary
@
© O
@
@
Weight Vector w = o ®
@ ® Unhealthy Leaves
0%, © x<0
, e —w-x<
7/
,/
0 =
Feature 1 —>

hyperplanel

Imagine we have a problem of classifying if a leaf is healthy or not based
on certain features of the leaf. For each leaf we have some feature vector set
assume it is a 2D vector space with say color as the feature for simplicity.

For any input feature vector in that vector space, if we have a weight
vector, whose dot product with one feature vector of the set of input vectors
of a certain class (say leaf is healthy) is positive, and with the other set is
negative, then that weight vector is splitting the feature vector hyper-plane
into two.

Or in a better way, which shows the vectors properly

weightvector

In essence, we are using the weight vectors to split the hyper-plane into
two distinctive sets.

For any new leaf, if we only extract the same features into a feature vector;
we can dot product it with the trained weight vector and find out if it falls
in healthy or deceased class.

Here is a Colab notebook to play around with this.14
Summary

What we have seen so far is that we can represent real world features as
vectors residing in some N dimensional space.

We can then use the concept of hyperplane to split the feature space into
two distinctive sets. This is the magic of Representation

Next Perceptron Training

https://colab.research.google.com/drive/1_pXIMvSCzqkIOG26i6TaRxXZawezrAK-?usp=sharing
clbr://internal.invalid/book/EPUB/text/2_perceptron_training.md

2.2 References

e Vector Space - Wikipedia

e Introduction to Vectors - MathCentre

e Euclidean Vector - Wikipedia

e Dot Product - Paul’s Online Math Notes

e Vector Math - MathOfNeuralNetworks

e Minsky’s And-Or Theorem

e The Perceptron - Mael Fabien

e Rosenblatt’s Perceptron Article

e Colab Notebook

e A Primer on Index Notation - John Crimaldi

https://en.wikipedia.org/wiki/Vector_space
http://www.mathcentre.ac.uk/resources/uploaded/mc-web-mech1-5-2009.pdf
https://en.wikipedia.org/wiki/Euclidean_vector
http://tutorial.math.lamar.edu/Classes/CalcII/DotProduct.aspx
https://sergedesmedt.github.io/MathOfNeuralNetworks/VectorMath.html#learn_vector_math_diff
https://alan.do/minskys-and-or-theorem-a-single-perceptron-s-limitations-490c63a02e9f
https://maelfabien.github.io/deeplearning/Perceptron/#the-classic-model
https://sergedesmedt.github.io/MathOfNeuralNetworks/RosenblattPerceptronArticle.html
https://colab.research.google.com/drive/1_pXIMvSCzqkIOG26i6TaRxXZawezrAK-?usp=sharing
https://web.iitd.ac.in/~pmvs/courses/mcl702/notation.pdf

3 Perceptron Training via Feature

Vectors & HyperPlane split

Xg =1 .\WU=—9

] . WT\\ﬂ
X2 .\E\\

X3

X4
X

X

perceptron
Let’s follow from the previous chapter of the Perceptron neural network.

We have seen how the concept of splitting the hyper-plane of feature set
separates one type of feature vectors from other.

3.1 How are the weights learned?

You may have heard about Gradient Descent, which is the backbone of
training modern neural networks. However, for the classic Perceptron, the
learning algorithm is much simpler and relies on a geometric intuition.

The goal is to find a weight vector w that defines a hyperplane
separating the two classes of data (e.g., Positive and Negative).

Note this term hyperplane is used in the context of feature vector space and
is used throughout neural network learning.

3.1.1 The Intuition: Nudging the Vector

Imagine the weight vector w as a pointer. We want this pointer to be
oriented such that: 1. It points generally in the same direction as Positive
examples. 2. It points away from Negative examples.

We start with a random weight vector. Then, we iterate through our training
data and check how the current w classifies each point.

o If the classification is correct: We do nothing. The weight vector is
already doing its job for this point.

o If the classification is wrong: We need to “nudge” or rotate the weight
vector to correct the error.

3.1.2 The Update Rules

Let’s say we have an input vector .

Case 1: False Negative The input x is a Positive example (y = 1), but our
current w classified it as negative (dot product w - < 0). * Action: We
need to rotate w towards x. * Update: Wy, = Wyq + T * Result: Adding

x to w makes the new vector more aligned with x, increasing the dot
product for the next time.

Case 2: False Positive The input z is a Negative example (y = 0 or —1),
but our current w classified it as positive (dot product w - & > 0). * Action:
We need to rotate w away from x. * Update: wyc,, = Woiq — « * Result:
Subtracting from w pushes it in the opposite direction, decreasing the dot
product.

3.1.3 The Formal Algorithm

We can combine these rules into a single update equation. We often
introduce a learning rate 7 (a small number like 0.1) to make the updates
smoother, preventing the weight vector from jumping around too wildly.

For each training example (z, Ytqrget): 1. Compute prediction:
y = step_function (w - x) 2. Calculate error: error = Ytarget — 7 3.
Update weights:

wW=w-+mn-error-x
This is known as the Perceptron Learning Rule.

Aw; = 1N (Ytarget — prediction)z;

Note: This is distinct from Gradient Descent. Gradient Descent requires
a differentiable activation function to compute gradients (slope). The
Perceptron uses a “step function” (hard 0 or 1) which is not
differentiable. However, this simple rule is guaranteed to converge if
the data is linearly separable.

A more rigorous explanation of the proof can be found in the book Neural
Networks by R.Rojas or this article.

Next: Gradient Descent and Optimization

https://page.mi.fu-berlin.de/rojas/neural/chapter/K4.pdf
https://page.mi.fu-berlin.de/rojas/neural/chapter/K4.pdf
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
clbr://internal.invalid/book/EPUB/text/3_gradient_descent.md

3.2 References

e Neural Networks - R. Rojas (Chapter 4)
o Perceptron Learning Algorithm - Towards Data Science
e Gradient Search - Alvarez

https://page.mi.fu-berlin.de/rojas/neural/chapter/K4.pdf
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
http://www.cs.bc.edu/~alvarez/ML/gradientSearch.pdf

4 Gradient Descent

4.1 Neural Network as a Chain of Functions

To understand deep learning, we need to understand the concept of a neural
network as a chain of functions.

A Neural Network is essentially a chain of functions. It consists of a set of
inputs connected through ‘weights’ to a set of activation functions, whose
output becomes the input for the next layer, and so on.

Each neuron takes in

Each connection applies a ; ;
multiple inputs

‘weighted” influence on
the receiving neuron

Hidden layers can't directly
"see” or act on outside world
=21 input

) =1 output
neurons

neurons

Eachinput can
be a separate
“feature”

o
output layer

Output “fires” if all

input layer . ‘
put laye weighted inputs sum

hidden layer 1 hidden layer 2 to a set “threshold”
Each layer performs a l — . :
discrete function Layers build on each other =1 hidden layers
[ilera tiVe:‘ = 2%In githu b o/neyral -netwo rks-1
neuralnetwork
4.1.1 The Forward Pass

Let’s consider a simple two-layer neural network.

x: Input vector

y: Output vector (prediction)

L: Number of layers

w', b': Weights and biases for layer [

o a': Activation of layer [(we use sigmoid o here)

The flow of data (Forward Pass) can be represented as:

z—a —... a5y

!is calculated as:

For any layer [, the activation a
dd = o (wlal—l 4 bl)

where aY

= z (the input).
The linear transformation:
z=wle +b

defines a hyperplane (decision boundary) in the feature space.

The activation function then introduces non-linearity, allowing the network
to combine multiple such hyperplanes into complex decision
boundaries.

4.1.1.1 Why Non-Linearity Is Non-Negotiable
Without activation:
flx) =W Wr_4.. Wiz
This collapses to:
f(x) =Wz

Still one big linear transformation and hence one hyperplane; the problems
of not able to separate features will come. Only because of non-linearity, we

can get multiple hyperplanes and hence a composable complex decision
boundaries that can separate features.

So the concept of Vectors, Matrices and Hyperplanes remain the same as
before. Let us explore the chain of functions part here

A neural network with L layers can be represented as a nested function:

f(@)=fo(..f2(f1(2)).)

Each “link” in the chain is a layer performing a linear transformation
followed by a non-linear activation and cascading to the final output.

4.1.2 The Cost Function (Loss Function)

To train this network, we need to measure how “wrong” its predictions are
compared to the true values. We do this using a Cost Function (or Loss
Function).

A simplest Loss function is just the difference between the predicted output
and the true output ($ y(x) - aAL(x) $.)

But usually we use the square of the difference to make it a non-negative
function.

A common choice is the Mean Squared Error (MSE):

0= 53 y(@) —a" @) |

T

e n: Number of training examples
e y(x): The true expected output (label) for input
o a® (z): The network’s predicted output for input z

4.1.3 The Goal of Training

The goal of training is to find the set of weights w and biases b that
minimize this cost C.

This means that we need to optimise each component of the function f ()
to reduce the cost proportional to its contribution to the final output. The
method to do this is called Backpropagation. It helps us calculate the
gradient of the cost function with respect to each weight and bias.

Once the gradient is calculated, we can use Gradient Descent to update the
weights in the opposite direction of the gradient.

Gradient descent is a simple optimization algorithm that works by
iteratively updating the weights in the opposite direction of the gradient.

However neural network is a composition of vector spaces and linear
transformations. Hence gradient descent acts on a very complex space.

There are two or three facts to understand about gradient descent:

1. It does not attempt to find the global minimum, but rather follows the
local slope of the cost function and converges to a local minimum or a
flat region. Saddle point is a good optimisation point.

2. Gradients can vanish or explode, leading to slow or unstable
convergence. The practical solution to control this is to use learning
rate and using adaptive learning rate methods like Adam or
RMSprop.

3. Batch Size matters: Calculating the gradient over the entire dataset
(Batch Gradient Descent) is computationally expensive and memory-
intensive. In practice, we use Stochastic Gradient Descent (SGD)
(one example at a time) or, more commonly, Mini-batch Gradient
Descent (a small batch of examples). This introduces noise into the
gradient estimate, which paradoxically helps the optimization process
escape shallow local minima and saddle points.

4.2 Optimization: Gradient Descent — Take 1

Gradient Descent is a simple yet powerful optimization algorithm used to
minimize functions by iteratively updating parameters in the direction that
reduces the function’s output.

For basic scalar functions (e.g., (f(z) = 332)), the update rule is
straightforward:

d
xex—nd—z

where (7) is the learning rate.

However, neural networks are not simple scalar functions. They are
composite vector-valued functions — layers of transformations that take
in high-dimensional input vectors and eventually output either vectors (like
logits) or scalars (like loss values).

Understanding how to optimize these complex, high-dimensional functions
requires us to extend basic calculus: - The gradient vector helps when the
function outputs a scalar but takes a vector input (e.g., a loss function w.r.t.
weights). - The Jacobian matrix becomes important when both the input
and the output are vectors (e.g., when computing gradients layer by layer in
backpropagation).

We’ll build up to this step by step — starting with scalar gradients, then
moving to vector calculus, Jacobians, and how backpropagation stitches it
all together.

Let’s take it one layer at a time.

4.3 Gradient Descent for Scalar Functions

Consider this simple system that composes two functions:

L=g(f(z,w1), ws)

Where: - z is your input (fixed, given by your data) - w; and wy are
parameters you can adjust (like weights in a neural network) - f is the
first function (think: first layer) - g is the second function (think: second
layer) - L is the final output

Let’s make this concrete with simple linear functions:
f(z,wi) =x-wi + by
9 (z,ws) = z-ws + by

So the full composition is:

L=g(f(z,wi),wz) = (z-w1+b1) w2+ by

4.3.1 Running the Numbers: A Real Example

Let’s pick actual values and see what happens:

Fixed values: - Input: x = 2.0 - Bias terms: by = 1.0, b = 0.5

Current parameter values: - w; = 0.5 - wy = 1.5

Step 1: Compute intermediate result from first function:
z=f(z,w1) =2.0x05+1.0=2.0

Step 2: Compute final output from second function:
L=g(z,wy) =2.0x15+0.5=35

The problem: Suppose we want Liarget = 5.0 instead!

Our current error is:

1 1 1
E= (L~ Liarget)” = (3.5~ 5.0)° = 5(—1.5)2 —=1.125

The million-dollar question: How should we change w; and w» to reduce
this error?

4.3.2 The Adjustment Problem: Which Direction?
How Much?

Here’s what we need to know:

1. Should we increase or decrease wi? (Which direction?)
2. How sensitive is L to changes in w;? (How much?)
3. Same questions for w».

This is where derivatives come in! Specifically, we need:

OL and oL
8w1 ng

These tell us:

 Sign: Positive means “increase w increases L”, negative means the
opposite

e Magnitude: Larger absolute value means L is more sensitive to
changes in w

But there’s a complication: w; doesn’t directly affect L. It affects f, which
then affects g, which then affects L. This is a compesition, and we need to
trace the effect through multiple steps.

This is where the “Chain Rule” of Calculus comes into play.

4.3.3 The Chain of Effects

Let’s visualize how changes propagate:

Change w; - Affects f - Changes z - Affects g - Changes L
! ! ! !
Aw 4 of/ow; Az 0g/0z AL

Similarly for wo (but w4 directly affects g):

Change w, - Affects g - Changes L
Lol
Aw, 0g/ow, AL

The key insight: To find how w; affects L, we need to multiply the
effects at each step.

This is the chain rule in action!

4.3.4 The Solution: Applying the Chain Rule

For our composition L = g (f (z,w1), ws), let’s introduce a shorthand: call
z = f(x,w;) the intermediate value.

Then:

L =g(zws)
Computing 83—151:
By the chain rule of calculus:

OL OL 0z

ow; 0Oz . owq

Let’s compute each piece:

Part 1: How does L change with 2?

OL 0

525(2"(1}24—[)2):102:1.5

Part 2: How does z change with w;?

0z 0
dwr ~ dw. (x-w1+b)=2=2.0

Putting it together:

OL
— =1.5%x2.0=3.0
Bwl

Interpretation: If we increase w; by 0.1, then L increases by
approximately 3.0 x 0.1 = 0.3.

Computing g—i :

This is simpler because ws directly affects g:

oL 0
dw; ~ Dws (z-wa+by) =2=2.0

Interpretation: If we increase ws by 0.1, then L increases by
approximately 2.0 x 0.1 = 0.2.

4.3.5 Making the Update: Gradient Descent

Now we can adjust our parameters! Since we want to increase L from 3.5
to 5.0, and both gradients are positive, we should increase both w; and ws.

Using gradient descent with learning rate o = 0.2:

OL
wi™ =wi+a-—=054+02x3.0=05+0.6=1.1
8w1

OL
wy =wyta-——=15+02x20=15+04=1.9
8w2

Note: We’re adding (not subtracting) because we want to increase L.
Normally in machine learning, we minimize error, so we’d use w — a - 5.

4.3.6 Verification: Did It Work?

Let’s recompute with the new weights:
Step 1: New intermediate value:
2" =z -w™ +b =2.0x11+1.0=3.2
Step 2: New output:
L™V = 2" wy™ + by = 3.2 x 1.94 0.5 = 6.58

Progress check: - Before: L = 3.5 (error from target = 1.5) - After:
L = 6.58 (error from target = -1.58) - We overshot! But that’s okay - we
moved in the right direction

With a smaller learning rate (say a = 0.1), we’d get: - wi*" = 0.8,
wy™" = L.7-2"" = 2.6, L™V = 4.92 - Much closer to our target of 5.0!

This is how Gradient Descent works in a nutshell. The same concepts carry
over in deep learning with some added complexity.

4.4 Gradient Descent for a Two-Layer Neural
Network (Scalar Form)

Let’s apply this to a simple neural network with one hidden layer. We have:
* Input: « * Hidden Layer: 1 neuron with weight w1, bias b1, activation o

* Output Layer: 1 neuron with weight ws, bias bo, activation o * Target:
Y

Forward Pass: 1. 21 = wiz + by 2. a1 = 0 (21) 3. 29 = wea;1 + b2 4.
ay = 0 (z9) (This is our prediction)

Loss Function: We use the Mean Squared Error (MSE) for this single
example:

C = %(y — ay)’

. oc oC oC oC .
Goal: Find Bu b Dug s oy O update the weights.

Backward Pass (Deriving Gradients):

Layer 2 (Output Layer): We want how C' changes with ws.

oC 90C Oay Oz
Ows Oas 0Ozy Owy

. gTC; = — (y — a2) (Derivative of 1 (y — a)?)
gz; = o/ (z2) (Derivative of activation)
So,
oC
dw, (y — az)ot (22)as
Let’s define the “error term” for layer 2 as §2 = — (y — a2)o/ (z2). Then:
oC
dwy 9201
2
oC
— =03-1=105

Obs

Layer 1 (Hidden Layer): We want how C changes with w;. The path is
longer: wy — 21— a1 — 22 — a4y — C.
30 o 80 aaz 3,22 0a1 321
(9’(1)1 N 80,2 822 (90,1 (92’1 3’11)1
02

e We know the first part is J5.

So,

oC

8'w1

=Jdg-wy-0l(z1) T

Let’s define the error term for layer 1 as §; = dawa07/ (21). Then:

oC

—8’101 = 5133
oC
1

The Update:
wy — w1 — NO1x
W9 < W9 — 77520,1

This pattern—calculating an error term ¢ at the output and propagating it
back using the weights—is why it’s called Backpropagation.

Note that we are using here scalar form of gradient descent and not directly
applicable to real neural networks. But this gives us the intuition of how
backpropagation works.

4.5 Some other notes related to Gradient Descent

The Loss/Cost function is a scalar function of the weights and biases.
The loss/error is a scalar function of all weights and biases.

In simpler Machine Learning problems like linear regression with MSE, the
loss is a convex quadratic in the parameters, so optimization is well-
behaved (a bowl-shaped surface)(e.g. see left in picture).

In deep learning, the loss becomes non-convex because it is the result of
composing many nonlinear transformations. This creates a complex
landscape with saddle points, flat regions, and multiple minima (e.g. see
right in picture).

local min local max saddle point

A5
gy) A
"‘%":{’ SO

,*‘0 (AN

W
A

costfunction
How will Gradient Descent work in this case - non convex function?

Gradient descent does not attempt to find the global minimum, but rather
follows the local slope of the cost function and converges to a local
minimum or a flat region.

The Loss function is differentiable almost everywhere*. At any point in
parameter space, the gradient indicates the direction of steepest local
increase, and moving in the opposite direction reduces the cost. During
optimization, the algorithm may encounter local minima or saddle points.

(*The function is not differentiable at the point where the function is zero
ex ReLU. This is not a problem in practice, as optimization algorithms
handle such points using subgradients)

In practice, deep learning works well despite non-convexity, partly because
modern networks have millions of parameters and their loss landscapes
contain many saddle points and wide, flat minima rather than poor isolated
local minima.

Also we rarely use full-batch gradient descent. Instead, we use variants such
as Stochastic Gradient Descent (SGD) or mini-batch gradient descent that
acts as form of sampling.

In these methods, gradients are computed using a single training example or
a small batch of examples rather than the entire dataset.

The resulting gradient is an average over the batch and serves as a noisy
approximation of the true gradient. This stochasticity helps the optimizer
escape saddle points and sharp minima, enabling effective training in
practice.

Next: Backpropagation with Scalar Calculus

4.6 References

e Neural Networks and Deep Learning - Michael Nielsen
e Gradient Descent - Wikipedia

clbr://internal.invalid/book/EPUB/text/images/subgradient.png
clbr://internal.invalid/book/EPUB/text/images/poorlocalminima.png
clbr://internal.invalid/book/EPUB/text/images/poorlocalminima.png
clbr://internal.invalid/book/EPUB/text/4_backpropogation_chainrule.md
http://neuralnetworksanddeeplearning.com/chap2.html
https://en.wikipedia.org/wiki/Gradient_descent

5 Backpropagation with Scalar

Calculus

In this chapter lets deep dive a bit more into the technique of Back
Propagation

5.1 How Backpropagation Works

Consider a neural network with multiple layers. The weight of layer [is W*
. And for the previous layer it is W -1),

The best way to understand backpropagation is visually and by the way it is
done by the tree representation of 3Blue1Brown video linked here.

The below GIF is a representation of a single path in the last layer(/ of a
neural network; and it shows how the connection from previous layer - that
is the activation of the previous layer and the weight of the current layer is
affecting the output; and thereby the final Cost.

The central idea is how a small change in weight in the previous layer
affects the final output of the network.

https://www.youtube.com/watch?v=tIeHLnjs5U8

Co Cy = (GE _ y)z

Source : Author

5.2 Writing This Out as Chain Rule

Here is a more detailed depiction of how the small change in weight adds
through the chain to affect the final cost, and how much the small change
of weight in an inner layer affect the final cost.

This is the Chain Rule of Calculus and the diagram is trying to illustrate
that visually via a chain of activations, via a Computational Graph

800 800 8&1 8Zl

OW'! dal 872 OW!

3C /6wt = 82 /6wl 6dl /67 . 6C, /8a!

Source : Author

Next part of the recipe is adjusting the weights of each layers, depending on
how they contribute to the Cost. We have already seen this in the previous

chapter.

The weights in each layer are adjusted in proportion to how each layers
weights affected the Cost function.

This is by calculating the new weight by following the negative of the
gradient of the Cost function - basically by gradient descent.

0C)
ow'!

l
Wnew

l
=Woa—n

For adjusting the weight in the (I — 1) layer, we do similar

First calculate how the weight in this layer contributes to the final Cost or
Loss

0C) 0C) dal1 9z 1

OWIl-1 — 8al-1 9z-1 gwi-1

and using this. Basically we are using Chain rule to find the partial
differential using the partial differentials calculated in earlier steps.

0C)
oW1

-1 _ tirl—1
Wiew =Wy — 1

new

5.3 Neural Net as a Composition of Vector
Functions
Lets first look at a neural network as a composition of vector functions.

Imagine a simple neural network with 3 layers. It is essentially a
composition of three functions:

A neural network is a composition of vector-valued functions, followed by a
scalar-valued cost function:

$$ C = (a_3)

a_3=L_3(L_2(L_1(x))) $$
Where L1, Lo and Lg are the three layers of the network and

Each layer is defined as:
zi =Wia;_1+bi, a; =0(2)

And gradient descent is defined as:

Wi = Wiozd -n- 80/ 8Wz

Problem is to find the partial derivative of the loss function with respect to
the weights at each layer.

To calculate how a change in the first layer’s weights (W) affects the final
Cost (C), we have to trace the “path of influence” all the way through the
network.

A nudge in W changes the output of Layer 1. The change in Layer 1
changes the input to Layer 2. The change in Layer 2 changes the input to
Layer 3. The change in Layer 3 changes the final Cost.

Mathematically, we multiply the derivatives (Linear Maps) of these links
together:

We need to update weights of three layers

W]-ne'w — Wlold o /rl) 80/8W1
Wznew — Wzold _ TI : 80/8W2
W3new — W3old o T’ : 60/8W3

And for that we need to find C/W_1,$C/W 2%, $C/W_38§.

Lets write down the chain rule for each layer:

oC 0C O0Ls 0Ly 0L

oW, OL; OL, OL; OW;
oC oC OLs; 0L,

OW, OLs OL, OW,
8C 9C 9Ly

OWs OL; OWs

Why is this written this way? By the chain rule, the derivative of a
composition of functions is the product of the derivatives of the
functions. It is thus easy to calculate the gradient of the loss with respect to
the weights of each layer.

Lets calculate the gradient of the loss with respect to the weights of the first
layer.

Notice something interesting?

e To calculate 8‘95 , we need 9C
e To calculate E?WC, , we need g—g . g—fz.
e To calculate 3‘9&,} , we need ggg . giz - gﬁf.

We are re-calculating the same terms over and over again!

If we start from the Output (Layer 3) and move Backwards: 1. We

calculate gf once. We use it to find the update for W3j.

2. We pass this value back to fmd (Wthh is g g . 6L3 3L,). Weuse it to
find the update for Ws.
3. We pass that value back to flnd . We use it to find the update for

Wi.

This avoids redundant calculations and is why it’s called Backpropagation.

It is essentially Dynamic Programming applied to the Chain Rule.

5.3.1 The Backpropagation Algorithm Step-by-
Step

Step 1: The Output Layer (L3)
We want to find the gradlent —. Using the Chain Rule:

oC oC 8&3 82’3
6W3 6a 3 62 3 8W3

Let’s break it down term by term:
1. Derivative of Cost w.r.t Activation () For MSE C = %(ag — y)2:

oC
% = (03 — y)

2. Derivative of Activation w.r.t Input (> day *): Since a3 = o (z3):

5a3

P o/ (z3)

3. Derivative of Input w.r.t Weights (glf[;”g): Since z3 = Wsas + bs:

0z 3
oW

Combining them: We define the “error” term d3 at the output layer as:

oC

5328—232(%—@@‘7’(23)

Note on © (Hadamard Product): We use element-wise multiplication
here because both (a3 — y) and o/ (23) are vectors of the same size.

The Jacobian of an element-wise activation o is a diagonal matrix:

% = diag (o7 (2))

So multiplying by it is the same as a Hadamard product:
diag (o (2)) v =v ® o/ (2)
We will see the Jacobian and Gradient Vector later.

So the gradient for the weights is:

aC .

Note on Transpose (ag): In backprop, we push gradients through a

linear map z = Wa + b. The Jacobian w.r.t. a is W, so the chain rule
gives:

oC oC
- —_wT =
Oa 0z

The transpose appears because we’re applying the transpose (adjoint)
of the Jacobian to move gradients backward.

Result: We have the update for W.

W3 :W3old—77-80/8W3

new

Step 2: Propagate Back to Lo

Now we need to find the gradient for the second layer weights: 59—1%. Using

the Chain Rule, we can reuse the error from the layer above:

oC _ 8C 0z
8W2 B 822 6W2

T

But what is & (the error at layer 2)?

5. — oC 0C 0z
27 8Z2 - 823 822
We know g—g = d3. And since z3 = W30 (22) + bs:
0z
8_22 = W3- ol (22)

So, we can calculate 2 by “backpropagating” d3:
b9 = (Wg . 53) OXed) (ZQ)

The Update Rule for Layer 2:

8C
=8y -a’
oW, 2 H

Result: We have the update for Ws.

e
" aw,

W = Wa old

new

Step 3: Propagate Back to L;

We repeat the exact same process to find the error at the first layer d;.
5, = (WI-68,) ®ot(z)

The Update Rule for Layer 1:

o, 01

(Recall that ag = =z, the input).

Result: We have the update for Wj.

oC

Wl - n: aWI

= W old

new

5.3.2 Summary

So, Backpropagation is the efficient execution of the Chain Rule by
utilizing the linear maps of each layer in reverse order. * It computes the
local linear map (Jacobian) of a layer. * It takes the incoming gradient
vector from the future layer. * It performs a Vector-Jacobian Product to pass
the gradient to the past layer.

Next Backpropagation with Matrix Calculus

5.4 References

e Neural Networks and Deep Learning - Michael Nielsen

clbr://internal.invalid/book/EPUB/text/5_backpropogation_matrix_calculus.md
http://neuralnetworksanddeeplearning.com/chap2.html
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

6 Backpropagation with Matrix

Calculus

The previous chapters we used a Scalar derivation of the Back Propagation
formula to implement it in a simple two layer neural network. What we
have done is is to use Hadamard product and matrix transposes with scalar
derivation alignment.

But we have not really explained why we use Hadamard product and matrix
transposes with scalar derivation alignment.

This is due to Matrix Calculus which is the real way in which we should be
deriving the Back Propagation formula.

Lets explore this in this chapter. Note that we are still not using a Softmax
activation function in the output layer as is usually the case with Deep
Neural Networks. Deriving the Back Propagation formula with Softmax
activation function is bit more complex and we will do that in a later
chapter.

Let’s take the previous two layered simple neural network,with a Mean
Square Error Loss function, and derive the Back Propagation formula with
Matrix Calculus now.

Let’s write the equation of the following neural network

x is the Input
y is the Output.

1 is the number of layers of the Neural Network.
a is the activation function , (we use sigmoid here)

z—adt—d - Y
Where the activation a' is
d = o (W™ +1).
and
ad =0 (zl) where 2z = Wla!=! + 1!
Our two layer neural network can be written as

a’ wal wa?—y

(a? does not denote the exponent but just that it is of layer 2)

6.1 Some Math Intuition

The concept of a Neural Network as a composition of functions remains
central.

In our network, most layers represent functions that map a Vector to a
Vector (R" — R™). For example, the hidden layers take an input vector
and produce an activation vector.

However, the final step—calculating the Loss—is different. It maps the
final output vector a” (and the target v) to a single Scalar value, the Cost C
(R™ — R).

6.1.1 Gradient Vector

When we take the derivative of a scalar-valued function (like the Cost C)
with respect to a vector (like the weights w), the result is a vector of the
same size as w. This is called the Gradient Vector.

- 90 7
6’w1

V.C=| :
ocC

| Ow,,

Why is it called a “gradient”?

Because the gradient points in the direction of steepest increase of the
function.

Moving a tiny step along +V ,,C increases the cost the fastest.

Moving a tiny step against it, i.e. along —V,,C, decreases the cost the
fastest.

That’s exactly why gradient descent updates parameters like this:
w <+— w —nV,C
where 7 is the learning rate.

So the gradient vector is more than a list of derivatives—it’s the local
direction that tells us how to change parameters to reduce the loss.

See the Colab 7_1 for a generated visualization of this.

The first image is the plotting of the Cost function

https://colab.research.google.com/drive/1sMODrDCdR7lKF9cWcNNhhdLglxJRzmgK?usp=sharing

3D Loss Surface with Gradient Descent Path (and optional -VC cones)

u qudienl descent path
Near optimum (2,1)

35
40 30

25

20

@v ™

15

gradient_vector

The second image where you see the cones are the gradient vector of the
Cost function wrto weights plotted in 3D space.

3D Loss Surface with Gradient Descent Path (and optional -VC cones)

u g@dienl descent path
Near optimum (2,1)

35

30

25

20

15

10

gradient_vector

6.2 Jacobian Matrix

The second key concept is the Jacobian Matrix.

As mentioned earlier, in our network, most layers represent functions that
map a Vector to a Vector (R” — R™). For example, a hidden layer takes
an input vector x and produces an activation vector a.

What is the derivative of a vector-valued function with respect to a vector
input? This is where the Jacobian comes in.

For a function f : R™ — R™ that maps an input vector x of size n to an
output vector y of size m, the derivative is an m X n matrix called the
Jacobian Matrix J.

The entry J;; is the partial derivative of the i-th output component with
respect to the j-th input component:

_ Ofi
B (9xj

6.2.1 The Chain Rule with Matrices

The beauty of the Jacobian is that it allows us to generalize the chain rule.

For scalar functions, the chain rule is just multiplication:

(fog)(z) = fr(g(x))- g (x).

For vector functions, the chain rule becomes Matrix Multiplication of the
Jacobians:

If we have a composition of functions y = f (g (z)), and we let A be the
Jacobian of f and B be the Jacobian of g, then the Jacobian of the
composition is simply the matrix product A - B.

(A- B)ij - Z Air, - By
k=1

So, the Jacobian is a matrix of partial derivatives that represents the local
linear approximation of a vector function. When we say the Jacobian
represents a “local linear approximation,” we mean:

Change in Output ~ Jacobian Matrix - Change in Input
Ay~ J - Ax

It tells us: “If I nudge the input vector by a tiny vector Az, the output
vector will change by roughly the matrix-vector product J - Ax.”

6.2.2 Backpropagation Trick - VJP (Vector
Jacobian Product) and JVP (Jacobian Vector
Product)

There is one more trick that we can use to make backpropogation more
efficient.

Let me explain with an example.

Suppose we have a chain of functions: y = f (g (h (z))). To find the

derivative %, the chain rule tells us to multiply the Jacobians:

Jtotal — Jf']th

If x, h, g, f are all vectors of size 1000, then each Jacobian is a
1000 x 1000 matrix. Multiplying them is expensive (O (N 3)).

However, in Backpropagation, we always start with a scalar Loss

function. The final derivative %—2 is a row vector (size 1 x N).

So we are computing;:

oC

VC="21J; - J, - i
(9y ~ = =
\R,J'V/ NxN NxN NxN

Notice the order of operations matters! 1. Jacobian-Matrix Product: If we
multiply the matrices first (J¢ - J4), we do expensive matrix-matrix
multiplication. 2. Vector-Jacobian Product (VJP): If we multiply from left
to right: * v; = % - J¢ (Vector x Matrix — Vector) * vy = vy - J,

(Vector X Matrix — Vector) * vg = vo - Jj (Vector x Matrix — Vector)
We never explicitly compute or store the full Jacobian matrix. We only

compute the product of a vector with the Jacobian. This is much faster (
@) (N 2)) and uses less memory.

This is the secret sauce of efficient Backpropagation!

6.2.3 Hadamard Product

Another important operation we use is the Hadamard Product (denoted by
® or sometimes o). This is simply element-wise multiplication of two
vectors or matrices of the same size.

a b ay-b
1 o 1l _ (@101
a9 b2 ay - b2
It is different from the dot product (which sums the results to a scalar) and
matrix multiplication. In backpropagation, it often appears when we apply

the chain rule through an activation function that operates element-wise
(like sigmoid or ReL.U).

6.3 Backpropagation Derivation

6.3.1 The 2-Layer Neural Network Model

For this derivation, we use a simple 2-layer network (one hidden layer, one
output layer):

Wbt Wb

2
Wi > a > a

Forward Pass Equations: 1. Hidden Layer:
Zr=Wlz +0b!

ol = o ()

2. Output Layer:

22 — W2al 4 b2
a’ =0 (z2)
We use the Mean Squared Error (MSE) loss function:
2 112
I

1
C=5lly-a

6.3.2 Gradient Vector/2D-Tensor of Loss Function
in Last Layer

1 1 2
C= 3 |y—a®|*= EZ(?M—@?)
Where:
a’ =o (22) and 22 = W?32a' + b?

We want to find aaw% . Using the Chain Rule:

oC _ aC 92
OW?2 922 W2

Let’s define the error term §? as the derivative of the cost with respect to
the pre-activation 2?:

o 0C _0C o0
T 022 Ba? T 022

1.%:(a2—y)

2. %’; = o/ (22)

So, using the Hadamard product (®) for element-wise multiplication:

Note that none of these terms are exponents but super scripts.!
Hadamard product or Element-wise multiplication

The confusion usually lies in this term:

@
0z

Since a is a vector and z is a vector, the derivative of one with respect to the
other is technically a Jacobian Matrix, not a vector.However, because the
activation function o is applied element-wise (i.e., a; depends only on z;,
not on z; - That is - activation function in one layer is just dependent of the
output of only the previous layer and no other layers), all off-diagonal
elements of this Jacobian are zero.

ol (z1) 0

_ da _ 0 ol (2:2)

J =~ —
0z

When you apply the chain rule, you are multiplying the gradient vector
V ,C by this diagonal matrix J - VJP (Vector-Jacobian Product).

Key Identity: Multiplying a vector by a diagonal matrix is mathematically
identical to taking the Hadamard product of the vector and the diagonal
elements and this is why we use Hadamard product in backpropogation.

62 = (a2 — y) ® of (zz)

Now for the second part, we need to find how the Cost changes with respect
to the weights W ?2.

We know that 22 = W2al. In index notation, for a single element z?:

2 E : 2 1
Zi — Wikak
k

ocC

We want to find oWz

. Using the chain rule:

oC _ 9C 0z
OW2 022 OW32

1

1. We already defined % = 42

2. From the linear equation 22 = ...+ W2al + .. ., the derivative with
q ik k

,[:—o

respect to Wj{; is simply a,lg.

So:

oC
ow?

_ 52 1
= 2. al

If we organize these gradients into a matrix, the element at row ¢ and
column k is the product of the i-th element of §2 and the k-th element of a'.

Let’s visualize the matrix of gradients VW

oC oC

| OWn OWi2
VW = [oC oC]
oWy OWo

Substitute the result from step 3 (J; - ay):

510,1 51&2]

52a1 52a2

|

This is exactly the definition of the Outer Product ® of two vectors:

oC
oW ?

=6’ ®a = 52(a1)T — (Eq 3)

This gives us the gradient matrix for the last layer weights.

6.4 Jacobian of Loss Function in Inner Layer

Now let’s do the same for the inner layer (W 1).

oCc _ oC o2
oWl 9zl oWl

= 5'(a")"

We need to find 6' = %. We can backpropagate the error §2 from the next
layer:

= = (7)) oo (=)

Explanation: 1. We propagate §2 backwards through the weights (W2) "

2. We multiply element-wise by the derivative of the activation function
1
ot (24).

51

Putting it all together:

oC
ow'l

— ((W2)T(52 ® ol (zl)> (aO)T — (Eq5)

6.4.1 Summary of Backpropagation Equations
1. Compute Output Error:
ol = (aL — y) ® ol (zL)

2. Backpropagate Error:

sl — ((Wl+1)T51+1) ® ol (zl)
3. Compute Gradients:

oC
oW

_ s (al—l)T

6.4.2 Summary of Backpropagation Equations in
Terms of Numpy

Here is how these equations translate to Python code using NumPy,
assuming standard column vectors (shape (N, 1)).

Forward pass context:

X, al, a2 are column vectors

W1l, W2 are weight matrices

sigmoid_prime(z) is the derivative of activation

H*H H H H*

1. Compute Output Error (Hadamard Product)
'*!' operator in numpy is element-wise multiplication (Hadamard)
delta2 = (a2 - y) * sigmoid_prime(z2)

2. Gradient for W2 (Outer Product)
We need shape (n_out, 1) @ (1, n_hidden) -> (n_out, n_hidden)
dC_dw2 = np.matmul(delta2, al.T)

Alternative using einsum for outer product:
dC_dw2 = np.einsum('i,j->ij', delta2.flatten(), al.flatten())

3. Backpropagate Error to Hidden Layer

Matrix multiplication (W2.T @ delta2) followed by Hadamard
product

deltal = np.matmul(W2.T, delta2) * sigmoid_prime(z1)

4. Gradient for W1 (Outer Product)
dC_dwl = np.matmul(deltal, x.T)

6.5 Using Gradient Descent to Find the Optimal
Weights to Reduce the Loss Function

With equations (3) and (5) we can calculate the gradient of the Loss
function with respect to weights in any layer - in this example

oCc oC
oW1’ oW?2

We now need to adjust the previous weight, by gradient descent.

So using the above gradients we get the new weights iteratively like below.
If you notice this is exactly what is happening in gradient descent as well;
only chain rule is used to calculate the gradients here. Backpropagation is
the algorithm that helps calculate the gradients for each layer.

le
-1 __ 1-1
Wiew = Waid =N oo

new

Where 7 is the learning rate.

clbr://internal.invalid/book/EPUB/text/6_backpropogation_softmax.md

6.6 References

e Neural Networks and Deep Learning - Michael Nielsen
e Colab Visualization

https://cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.3-BackProp.pdf
http://neuralnetworksanddeeplearning.com/chap2.html
https://colab.research.google.com/drive/1sMODrDCdR7lKF9cWcNNhhdLglxJRzmgK?usp=sharing

7 Backpropagation with Softmax and Cross Entropy

Let’s think of a [layered neural network whose input is = a° and output is a’.In this network we will be using
the sigmoid (o) function as the activation function for all layers except the last layer I. For the last layer we use
the Softmax activation function. We will use the Cross Entropy Loss as the loss function.

This is how a proper Neural Network should be.

7.1 The Neural Network Model

I am writing this out, without index notation, and with the super script representing just the layers of the network.

_> —
a’ — hidden layers - W' 'a' 2+ b""! o (z"!) > Wha'+b' - P(z) — L (P,E

al-2 Z1-1

\begin{aligned}

ar0 \rightarrow

\underbrace{\text{hidden layers}}_{ar{1-2}}
\\rightarrow

\underbrace{WA{1-1} an{1-2}+bA{l1-1}}_{zA{l-1} }
\\rightarrow
\underbrace{\sigma(z/"\{1-1})}_{a"{I-1}}
\,\rightarrow

\underbrace{WAIl ar{1-1}+bAl}_{zA{1}/logits }
\\rightarrow

\underbrace{P(z/\l)} _{\vec P/ \text{softmax} /a’{1}}

\\rightarrow

al-1 z!/logits —
P/softmax/a! CrossEntrog

\underbrace{L (\vec P, \vec Y)}_{\text{CrossEntropyLoss} }

\end{aligned}
}

Y is the target vector or the Truth vector. This is a one hot encoded vector, example Y = [0, 1, 0], here the second
element is the desired class.The training is done so that the CrossEntropyLoss is minimized using Gradient

Descent algorithm.

P is the Softmax output and is the activation of the last layer a'. This is a vector. All elements of the Softmax
output add to 1; hence this is a probability distribution unlike a Sigmoid output.The Cross Entropy Loss L is a
Scalar.

Note the Index notation is the representation an element of a Vector or a Tensor, and is easier to deal with while
deriving out the equations.

Softmax (in Index notation) Below I am skipping the superscript part, which I used to represent the layers of the
network.

P v

p_j = \frac{eMz_j} }{\sum_k er{z_k}}

\end{aligned}

This represent one element of the softmax vector, example ?: [p1, P2, D3]

Cross Entropy Loss (in Index notation) Here y; is the indexed notation of an element in the target vector Y.
L=-5,y;logp,

L =-\sum_jy_j\log p_j

\end{aligned}

There are too many articles related to Back propagation, many of which are very good.However many explain in
terms of index notation and though it is illuminating, to really use this with code, you need to understand how it
translates to Matrix notation via Matrix Calculus and with help form StackOverflow related sites.

7.1.1 CrossEntropy Loss with Respect to Weights in Last Layer

L _ 3L 37!
aW! 3zl aW!

EqAl

\frac {\partial L} {\partial WAL}

=\color{red}{\frac {\partial L}{\partial zAl} } \cdot \color{green}{\frac {\partial zA1}{\partial WAL} } \rightarrow
\quad EqA1l

}

Where

e”i
L=-) ylogp, and pj=-—=—
k

> e

If you are confused with the indexes, just take a short example and substitute. Basically i,j,k etc are dummy indices
used to illustrate in index notation the vectors.

I am going to drop the superscript I denoting the layer number henceforth and focus on the index notation for the
softmax vector P and target vector Y

From Derivative of Softmax Activation -Alijah Ahmed

$3 {

oL __ O(— > . yrogp)
821 - Bzi

taking the summation outside

_ Z O(logpy)
= kY5,

since %(f (g(2))) = fr(g(z))g! (z)

_ 1 Opk
= =D kUk- e 0z

\frac {\partial L} {\partial z_i} = \frac {\partial ({-\sum_k y_k \log {p_k})} } {\partial z_i}

\\ \text {taking the summation outside} \ \ = -\sum_k y_k\frac {\partial ({ \log {p_k})}}{\partial z_i}
\\ \color{grey}{\text {since }

\frac{d} {dx} (f(g(x))) = f'(g(x))g'(x) }

\\

= -\sum_k y_k \cdot \frac {1}{p_k} \cdot \frac {\partial { p_k}}{\partial z_i}

\end{aligned}

} 8%

The last term % is the derivative of Softmax with respect to its inputs also called logits. This is easy to derive and

there are many sites that describe it. Example [Derivative of SoftMax Antoni Parellada]. The more rigorous
derivative via the Jacobian matrix is here The Softmax function and its derivative-Eli Bendersky

% = pi (65— py)
d;j = 1 when i =j
0;j =0 wheni#j

{

\begin{aligned}

\frac {\partial { p_i}}{\partial z_i} = p_i(\delta_{ij} -p_j) \ \

\delta_{ij} = 1 \text{ when i =j}

\

\delta_{ij} = 0 \text{ when i} \ne \text{j}

https://math.stackexchange.com/questions/945871/derivative-of-softmax-loss-function
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

\end{aligned}
}

Using this above and from Derivative of Softmax Activation -Alijah Ahmed

$$ {
= =2 Yk o - pi (8 —)
these i and j are dummy indices and we can rewrite this as
== kU i “ Pk (Gir; — pi)
taking the two cases and adding in above equation

d;x = 1 wheni=k and ;5 = 0 wheni # k

= {—yi- - -pi(l—pi)] - [—Zk#yk- o 1 (0 —p;)

= [_yi' i pi(1 —pz‘)] + [—Ek#yk' ﬁ 'pk(O—Pi)_

= [~y (1 —p)] + [— > kriYk (0 —pi)

= —Y +¥-pi + Ek# Yk-Di

= —Yi+pi (yz + Dk yk>

= —yi+pi (X k)

note that >, yr = 1as it is a One hot encoded Vector

=Pi— Y

% =p;—y;— EqAl.l

\frac {\partial L}{\partial z_i} = -\sum_k y_k \cdot \frac {1}{p_k} \cdot \frac {\partial { p_k} }{\partial z_i}

W\

https://math.stackexchange.com/questions/945871/derivative-of-softmax-loss-function

=-\sum_k y_k \cdot \frac {1}{p_k} \cdot p_i(\delta_{ij} -p_j) \ \ \text{these i and j are dummy indices and we can
rewrite this as}

W\

=-\sum_k y_k \cdot \frac {1} {p_k} \cdot p_k(\delta_{ik} -p_i) \ \ \text{taking the two cases and adding in above
equation } \\\delta_{ik} = 1 \text{ when i =k} \text{ and }

\delta_{ik} = 0 \text{ when i} \ne \text{k}

\\

= [- y_i\cdot \frac {1}{p_i} \cdot p_i(1 -p_i)]+[-\sum_{k \ne i} y_k \cdot \frac {1} {p_k} \cdot p_k(0 -p_i)]
\\

= [- y_i\cdot \frac {1}{p_i} \cdot p_i(1 -p_i)]+[-\sum_{k \ne i} y_k \cdot \frac {1} {p_k} \cdot p_k(0 -p_i)]
\\

= [- y_i(1 -p_i)]+[-\sum_{k \ne i} y_k \cdot (0 -p_i)]

\\

=-y_i+y_ip_i+\sum_{k\nei} y_kp_i\\
=-y_i+p_i(y_i+\sum_{k\nei}y_k)\\
=-y_i+p_i(\sum_{k} y_k)

\\

\text {note that } \sum_{k} y_k =1\, \text{as it is a One hot encoded Vector}
\\

=pi-yl

\\

\frac {\partial L} {\partial zAl} = p_i - y_i \rightarrow \quad \text{EqA1.1}
\end{aligned}

} 8%

We need to put this back in EgA1. We now need to calculate the second term, to complete the equation

oL __ OL . 97
OW! T 92 oWl

o= (Wlal_l + bl)

9 _ ¢ 1-1\T
g = (a'7)
Putting all together

Fr=0p-v-(@")" - EqAl
\frac {\partial L} {\partial WAL}
=\color{red}{\frac {\partial L.}{\partial zAl} } \cdot \color{green}{\frac {\partial zA1}{\partial WAL} }
\\
M1} = (WAL an{1-1}+bA])
\
\color{green}{\frac {\partial zAl}{\partial WAL} = (aM1-1})AT}
\\ \text{Putting all together} \ \
\frac {\partial L} {\partial WAL} = (p - y) \cdot (a*{1-1})AT \quad \rightarrow \quad \mathbf {EqA1}

\end{aligned}

7.2 Gradient Descent

Using Gradient descent we can keep adjusting the last layer like

oL

W=w-a-
ow'!

Now let’s do the derivation for the inner layers

7.3 Derivative of Loss with Respect to Weights in Inner Layers

The trick here is to find the derivative of the Loss with respect to the inner layer as a composition of the partial
derivative we computed earlier. And also to compose each partial derivative as partial derivative with respect to
either z* or w”® but not with respect to a”. This is to make derivatives easier and intuitive to compute.

OL __ 0L 0211
Wit = o1 " gyt v BAA2

\frac {\partial L} {\partial WA{l-1}}

=\color{blue}{\frac {\partial L}{\partial zA{I-1}}} \cdot \color{green}{\frac {\partial zA{1-1} } {\partial WA{l-
1}}} \rightarrow \text{EqA2}

\end{aligned}

We represent the first part in terms of what we computed earlier ie %

$$

OL _ AL 97 9d!

921 T 02 Bal T 92!

— Eq with respect to Prev Layer

% = (pi — yi) from the previous layer (from EqA1.1)
Zl = wlal71 + bl which makes 331211 = wl

and a' ' = o (¢!) which makes g‘;—fi = o/ (Z7)

Putting together we get the first part of Eq A2

DL — ((WZ)T- (p— y)) ®of (271) = EqA2.1

. -1 T
21 = Wt1g!=2 4 b1 which makes a%,,l = (a2

ot = e = () 0 -9) @or (7)) - (@)
\color{blue}{\frac {\partial L} {\partial zA{I-1}}} =
\color{blue}{\frac {\partial L}{\partial zA{1}}}.
\frac {\partial zA{1} } {\partial ar{I-1}}.
\frac {\partial a*{1-1} } {\partial zA{I-1}} \rightarrow \text{ Eq with respect to Prev Layer}
\\
\color{blue}{\frac {\partial L}{\partial zA{1}}} = \color{blue}{(p_i- y_i)}
\text{ from the previous layer (from EqA1.1) }
\\
zNl = wAl aM{1-1}+bAL
\text{ which makes }
{Mrac {\partial zA{I} }{\partial ar{l-1}} = wAl} \ \text{ and }
aMI1-1} =\sigma (z"\{1-1}) \text{ which makes }

\frac {\partial a*{1-1} } {\partial zA{l-1}} = \sigma \color{red}{'} (z"{1-1})

\\ \text{ Putting together we get the first part of Eq A2 }

\

\color{blue}{\frac {\partial L}{\partial zA{l-1}}} = \left((WADAT \cdot \color{blue}{(p- y)} \right) \odot \sigma
\color{red}{'} (z"{1-1}) \rightarrow \text{EqA2.1 }

\\

zM1-1} = WA{1-1} ar{1-2}+bA{1-1}

\text{ which makes }

\color{green}{\frac {\partial z\{1-1} } {\partial WA{l-1}}=(ar{1-2})AT}
\\

\frac {\partial L}{\partial WA{1-1}}

=\color{blue} {\frac {\partial L} {\partial zA{1-1}}} \cdot \color{green}{\frac {\partial zA{1-1} } {\partial WA{l-
1}}} =\left(\left((WADAT \cdot \color{blue}{(p- y)} \right) \odot \sigma '(z"{1-1}) \right) \cdot \color{green}
{@M1-2HAT}

\end{aligned}

$$

7.4 Some Implementation Details

For a detailed explanation of the Matrix Calculus, Jacobian, and Hadamard product used here, please refer to
Chapter 6: Back Propagation - Matrix Calculus.

From Index Notation to Matrix Notation

The equations above use index notation for clarity. In practice, we use Matrix Notation which involves Transposes
and Hadamard products as explained in the previous chapter.

7.4.1 Implementation in Python

Here is an implementation of a relatively simple Convolutional Neural Network to test out the forward and back-
propagation algorithms given above https:/github.com/alexcpn/cnn_in python. The code is well commented and
you will be able to follow the forward and backward propagation with the equations above.

7.5 Gradient Descent

Using Gradient descent we can keep adjusting the inner layers like

oL

-1 __ -1
W —W —OZ'W

Next: Neural Network Implementation

https://github.com/alexcpn/cnn_in_python
clbr://internal.invalid/book/EPUB/text/7_neuralnetworkimpementation.md

7.6 References

Calculus) though not really correct

¢ Notes on Backpropagation - Peter Sadowski - Easy to follow but lacking in some aspects

e The Softmax function and its derivative - Eli Bendersky, - Slightly hard to follow using the Jacobian

e Backpropagation In Convolutional Neural Networks - Jefkine - More difficult to follow with proper index
notations (I could not) and probably correct

e A Primer on Index Notation - John Crimaldi

e The Matrix Calculus You Need For Deep Learning - Terence Parr & Jeremy Howard

e Neural Networks and Deep Learning - Michael Nielsen

* Derivative of Softmax Activation - Alijah Ahmed

https://bfeba431-a-62cb3a1a-s-sites.googlegroups.com/site/deeplearningcvpr2014/ranzato_cvpr2014_DLtutorial.pdf?attachauth=ANoY7cqPhkgQyNhJ9E7rmSk-RTdMYSYqpfJU2gPlb9cWH_4a1MbiYPq_0ihyuolPiYDkImyr9PmA-QwSuS8F3OMChiF97XTDD_luJqam70GvAC4X6G6KlU2r7Pv1rqkHaMbmXpdtXJHAveR_jWf1my_IojxFact87u2-1YXtfJIwYkhBwhMsYagICk-P6X9ktA0Pyjd601tboSlX_UGftX1vB57-tS6bdAkukhmSRLU-ZiF4RdJ_sI3YAGaaPYj1KLWFpkFa_-XG&attredirects=1
https://www.ics.uci.edu/~pjsadows/notes.pdf
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/%5D
https://web.iitd.ac.in/~pmvs/courses/mcl702/notation.pdf
https://arxiv.org/pdf/1802.01528.pdf
http://neuralnetworksanddeeplearning.com/chap2.html
https://math.stackexchange.com/questions/945871/derivative-of-softmax-loss-function

8 Neural Network Implementation

With the derivative of the Cost function derived from the last chapter, we
can code the network We will use matrices to represent input and weight
matrices.

[!NOTE] Important Note on Matrix Conventions: In the previous
chapters (Matrix Calculus), we derived equations assuming Column
Vectors (where input « is N X 1). However, in standard
Python/NumPy implementations (like the one below), we typically use
Batch Processing where inputs are Row Vectors (where input X is
BatchSize x Features).

This means: * Input X has shape (Batchsize, InputFeatures) *
Weight W has shape (InputFeatures, OutputFeatures) * Forward
passis Z = X - W (instead of W - x) * This effectively transposes the
standard mathematical notation. The code below follows this “Row
Vector/Batch” convention.

X = np.array(
[
[0,0,1],
[6,1,1],
[1,0,1],
[1,1,1]
1)

This is a 4*3 matrix. Note that each row is an input. lets take all this 4 as
‘training set’

y = np.array(
[
(0],
[1],
(6],
[1]
1)

Note you can change the output and try to train the Neural network This is a
4*1 matrix that represent the expected output. That is for input [0,0,1] the
output is [0] and for [0,1,1] the output is 1 etc.

A neural network is implemented as a set of matrices representing the
weights of the network.

Let’s create a two layered network. Before that please note the formula for
the neural network So basically the output at layer 1 is the dot product of the
weight matrix of layer | and input of the previous layer.

Now let’s see how the matrix dot product works based on the shape of
matrices.

[m*n].[n*x]
[m*x]. [x*y]

[m*x]
[m*y]

We take the [m*n] as the input matrix this is a [4*3] matrix.
Similarly the output y is a [4*1] matrix; so we have [m*y| = [4*1]

So we have

< X o 3
R YW ks

https://en.wikipedia.org/wiki/Vector_space

Lets then create our two weight matrices of the above shapes, that represent
the two layers of the neural network.

wo = X
wl = np.random.random((3,4))
w2 = np.random.random((4,1))

We can have an array of the weights to loop through, but for the time being
let’s hard-code these. Note that ‘np’ stands for the popular numpy array
library in Python.

We also need to code in our non-linearity. We will use the Sigmoid function
here.

def sigmoid(x):
return 1/(1+np.exp(-x))

derivative of the sigmoid
def derv_sigmoid(x):
return sigmoid(x)*(1-sigmoid(x))

With this we can have the output of first, second and third layer, using our
equation of neural network forward propagation.

a0 = x
al = sigmoid(np.dot(a®,wl))
a2 = sigmoid(np.dot(al,w2))

a2 is the calculated output from randomly initialized weights. So lets
calculate the error by subtracting this from the expected value and taking
the MSE.

1
C=lly—d

cO = ((y-a2)**2)/2

Now we need to use the back-propagation algorithm to calculate how each
weight has influenced the error and reduce it proportionally.

We use this to update weights in all the layers and do forward pass again,
re-calculate the error and loss, then re-calculate the error gradient % and

repeat

$$
w? = w? — (%)*learningRate
w! = w! — (%)*learningRate

wA2 = wA2 - (\Mfrac {\partial C}{\partial wA2})*learningRate \ \
wAl = wAl - (\frac {\partial C}{\partial wA1})*learningRate
\end{aligned}

$$

Let’s update the weights as per the formula derived in the previous chapter:

aC

owl

— o7 (a1)*(a%) T*8%* w201 (z3) — Eq (5)

\frac {\partial C}{\partial wA1} =\sigma'(z/\1) *
(aMOPHAT*\deltaN{ 2 } *wA2 \sigma'(z/2) \quad \rightarrow \mathbb Eq \; (5)
}

6 = (a2 — y)
oC

ow?2

= 5%*¢’ (z2)*(a!)’ — Eq (3)

\frac {\partial C}{\partial wA2}=\deltar{2}*\sigma/{'}(z/2) * (aM1}DAT
\quad \rightarrow \mathbb Eq \; (3) }

8.1 A Two layered Neural Network in Python

Below is a two layered Network; I have used the code from
http://iamtrask.github.io/2015/07/12/basic-python-network/ as the basis.
With minor changes to fit into how we derived the equations.

import numpy as np
seed random numbers to make calculation deterministic
np.random.seed(1)

pretty print numpy array
np.set_printoptions(formatter={"'float': '{: 0.3f}'.format})

let us code our sigmoid function
def sigmoid(x):
return 1/(1+np.exp(-x))

let us add a method that takes the derivative of x as well
def derv_sigmoid(x):
return sigmoid(x)*(1-sigmoid(x))

Two layered NW. Using from (1) and the equations we derived as
explanations
(1) http://iamtrask.github.i10/2015/07/12/basic-python-network/

set learning rate as 1 for this toy example
learningRate = 1

input x, also used as the training set here

X = np.array([[e,0,1],[0,1,1],[1,0,1],[2,1,1] 1)
desired output for each of the training set above
y = np.array([[06,1,1,0]]).T

Explanation - as long as input has two ones, but not three,
output is One

Input [0,0,1] Output
Input [0,1,1] Output
Input [1,0,1] Output
Input [1,1,1] Output

mimn

oOr RO

Randomly initialized weights
weightl = np.random.random((3,4))
weight2 np.random.random((4,1))

Activation to layer 0 is taken as input X
a0 = X

iterations = 1000
for iter in range(0,iterations):

Forward pass - Straight Forward
z1= np.dot(x,weightl)
al = sigmoid(zl)
z2= np.dot(al,weight2)
a2 = sigmoid(z2)
if iter ==
print("Initial Output \n",a2)

Backward Pass - Backpropagation
delta2 = (a2-y)

Calculating change of Cost/Loss wrto weight of 2nd/last layer
Eq (A) ---> dC_dw2 = delta2*derv_sigmoid(z2)*al.T

dC_dw2_1 = delta2*derv_sigmoid(z2)
dC_dw2 = al.T.dot(dC_dw2_1)

Calculating change of Cost/Loss wrto weight of 2nd/last layer

Eq (B)---> dC_dwl =
derv_sigmoid(zl)*delta2*derv_sigmoid(z2)*weight2*a0.T

dC_dwl = derv_sigmoid(z1l)*dC_dw2*weight2_1*a0.T

dC_dwl = np.dot(dC_dw2_1, weight2.T) * derv_sigmoid(z1)
dC_dwl = a@.T.dot(dC_dwl)

weight2 = weight2 - learningRate*(dC_dw2)
weightl = weightl - learningRate*(dC_dw1l)

print('"New output",a2)

Lets test out, two ones in input and one zero, output should be
One

x = np.array([[1,0,1]])

z1= np.dot(x,weightl)

al = sigmoid(z1)

z2= np.dot(al,weight2)

a2 = sigmoid(z2)

print("Output after Training is \n",a2)

Output

Initial Output

[[0.758]

[0.771]

[0.791]

[0.801]]

New output [[0.028]

[0.925]

[0.925]

[0.090]]

Output after Training is

[[©.925]]

We have trained the NW for getting the output similar to y; that is [0,1,0,1]

8.2 References

e A Neural Network in 11 lines of Python - I Am Trask
* Colab Notebook

Index

http://iamtrask.github.io/2015/07/12/basic-python-network/
https://colab.research.google.com/drive/1uB6N4qN_-0n8z8ppTSkUQU8-AgHiD5zD?usp=sharing

	1 The Maths behind Neural Networks
	1.1 Contents

	2 The simplest Neural Network - Perceptron using Vectors and Dot Products
	2.1 The Magic of Representation - Vector Space and Hyperplane
	2.1.1 Vectors
	2.1.2 Matrices - A way to represent Vectors (and Tensors)
	2.1.3 Two dimensional matrices can be thought of as one dimensional vectors stacked on top of each other.
	2.1.4 Dot Product

	2.2 References

	3 Perceptron Training via Feature Vectors & HyperPlane split
	3.1 How are the weights learned?
	3.1.1 The Intuition: Nudging the Vector
	3.1.2 The Update Rules
	3.1.3 The Formal Algorithm

	3.2 References

	4 Gradient Descent
	4.1 Neural Network as a Chain of Functions
	4.1.1 The Forward Pass
	4.1.2 The Cost Function (Loss Function)
	4.1.3 The Goal of Training

	4.2 Optimization: Gradient Descent — Take 1
	4.3 Gradient Descent for Scalar Functions
	4.3.1 Running the Numbers: A Real Example
	4.3.2 The Adjustment Problem: Which Direction? How Much?
	4.3.3 The Chain of Effects
	4.3.4 The Solution: Applying the Chain Rule
	4.3.5 Making the Update: Gradient Descent
	4.3.6 Verification: Did It Work?

	4.4 Gradient Descent for a Two-Layer Neural Network (Scalar Form)
	4.5 Some other notes related to Gradient Descent
	4.6 References

	5 Backpropagation with Scalar Calculus
	5.1 How Backpropagation Works
	5.2 Writing This Out as Chain Rule
	5.3 Neural Net as a Composition of Vector Functions
	5.3.1 The Backpropagation Algorithm Step-by-Step
	5.3.2 Summary

	5.4 References

	6 Backpropagation with Matrix Calculus
	6.1 Some Math Intuition
	6.1.1 Gradient Vector

	6.2 Jacobian Matrix
	6.2.1 The Chain Rule with Matrices
	6.2.2 Backpropagation Trick - VJP (Vector Jacobian Product) and JVP (Jacobian Vector Product)
	6.2.3 Hadamard Product

	6.3 Backpropagation Derivation
	6.3.1 The 2-Layer Neural Network Model
	6.3.2 Gradient Vector/2D-Tensor of Loss Function in Last Layer

	6.4 Jacobian of Loss Function in Inner Layer
	6.4.1 Summary of Backpropagation Equations
	6.4.2 Summary of Backpropagation Equations in Terms of Numpy

	6.5 Using Gradient Descent to Find the Optimal Weights to Reduce the Loss Function
	6.6 References

	7 Backpropagation with Softmax and Cross Entropy
	7.1 The Neural Network Model
	7.1.1 CrossEntropy Loss with Respect to Weights in Last Layer

	7.2 Gradient Descent
	7.3 Derivative of Loss with Respect to Weights in Inner Layers
	7.4 Some Implementation Details
	7.4.1 Implementation in Python

	7.5 Gradient Descent
	7.6 References

	8 Neural Network Implementation
	8.1 A Two layered Neural Network in Python
	8.2 References

